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1. Executive Summary 

The landscape of biomedical research is increasingly reliant on multimodal 
physiological data to unravel the complexities of human biology and cognition. This 
report provides a critical review of publicly available datasets encompassing 
electroencephalography (EEG), electrocardiogram (ECG), photoplethysmography 
(PPG), and functional near-infrared spectroscopy (fNIRS). Key repositories such as 
PhysioNet and OpenNeuro serve as foundational resources, offering diverse 
collections of these signals. A recurring theme in the analysis is the inherent challenge 
of maintaining high signal quality, particularly due to pervasive motion artifacts and 
physiological confounds, which are exacerbated in real-world data acquisition 
scenarios. Furthermore, data completeness, influenced by factors like sample size and 
the "missing modality problem," significantly impacts the generalizability and utility of 
these resources. The report highlights the critical role of "ground truth" data in 
validating signal processing techniques and underscores how evolving data sharing 
standards, coupled with advanced benchmarking frameworks, are instrumental in 
driving continuous improvements in data quality and reusability. Ultimately, while 
challenges persist, the synergistic combination of these modalities offers a profoundly 
more comprehensive understanding of physiological states, paving the way for more 
robust biomarkers and interventions. 

2. Introduction to Multimodal Physiological Data in Biomedical Research 

The integration of multiple physiological signals, known as multimodal physiological 
data, represents a pivotal advancement in contemporary biomedical research. This 
approach moves beyond the limitations of single-modality studies, offering a more 
holistic and nuanced perspective on complex biological and cognitive processes. By 
combining diverse data streams, researchers can gain a deeper understanding of 
phenomena such as brain states, cognitive workload, stress levels, and cardiovascular 
health.1 

Each physiological modality brings unique strengths to this integrated framework. 
Electroencephalography (EEG) stands out for its exceptional temporal resolution, 
capturing millisecond-level changes in neuronal electrical activity with high precision.2 
In contrast, functional near-infrared spectroscopy (fNIRS) measures hemodynamic 
changes, specifically blood oxygenation, providing superior spatial resolution and 



direct insights into brain responses, particularly within the prefrontal cortex.1 The 
combination of EEG and fNIRS is particularly powerful, as it leverages the temporal 
strengths of EEG and the spatial insights of fNIRS, offering a more complete picture of 
neural activation than either method alone.2 

For cardiovascular assessment, the electrocardiogram (ECG) is considered the gold 
standard, accurately measuring the heart's electrical activity and cardiac cycle.7 
Complementing this, photoplethysmography (PPG) offers a simple, non-invasive 
optical method for detecting changes in blood volume. PPG is highly suitable for 
continuous monitoring, especially through wearable devices, and its metrics often 
correlate strongly with those derived from ECG.7 The increasing popularity of 
consumer wearable devices has significantly driven the collection of such 
physiological data, enabling studies in more naturalistic, real-world settings.7 This 
technological progress, including the development of low-power, high-precision 
wearable sensors, is fundamentally reshaping biomedical research by expanding the 
scope of what can be monitored and understood outside traditional laboratory 
environments.11 

However, the collection and analysis of multimodal data are not without their 
complexities. Challenges include ensuring precise signal synchronization across 
different devices, managing diverse sampling rates, and effectively addressing 
inherent noise and artifacts that can contaminate recordings.2 The very desire to 
capture data in more ecologically valid settings often introduces additional noise and 
complexity, necessitating sophisticated data integration and artifact removal 
techniques. 

To illustrate the distinct contributions and characteristics of these key modalities, 
Table 2 provides a comparative overview: 

Table 2: Comparative Characteristics of EEG, ECG, PPG, and fNIRS 

 
Feature EEG 

(Electroenceph
alography) 

ECG 
(Electrocardiog
ram) 

PPG 
(Photoplethys
mography) 

fNIRS 
(functional 
Near-Infrared 
Spectroscopy) 

Measured 
Process 

Neuronal 
electrical 
activity 

Heart's 
electrical 
activity 

Blood volume 
changes in 
microvasculatur

Hemodynamic 
changes (HbO, 
HbR) in brain 



e tissue 

Temporal 
Resolution 

Excellent 
(millisecond-lev
el) 2 

Excellent 
(millisecond-lev
el) 7 

Good (pulse 
waveform) 

Slower 
(seconds, peak 
4-6s 
post-stimulus) 4 

Spatial 
Resolution 

Limited (scalp 
surface) 2 

Limited (cardiac 
source) 

Limited (local 
blood flow) 

Better (cortical 
regions) 1 

Invasiveness Non-invasive Non-invasive 
(surface 
electrodes) 

Non-invasive 
(optical sensor) 

Non-invasive 

Common 
Artifacts/Noise 

Eye blinks, 
muscle activity, 
motion, line 
noise 2 

Motion, baseline 
drift, power line 
noise 8 

Motion, ambient 
light, pressure 
variations 7 

Motion, 
respiration, 
superficial 
hemodynamics 
16 

Continuous 
Monitoring 

Possible 
(wearable EEG) 

Challenging 
(requires 
stationary 
subject) 7 

Highly suitable 
(wearables) 7 

Possible 
(wearable 
fNIRS) 1 

The inherent limitations of single physiological signals necessitate a multimodal 
approach to achieve a comprehensive understanding of complex biological 
processes. For example, EEG's high temporal resolution is complemented by fNIRS's 
better spatial localization, allowing for a more complete characterization of brain 
activity.2 Similarly, the accuracy of ECG is balanced by the practicality of PPG for 
continuous monitoring, enabling broader applications in daily life.7 This combination of 
signals is not merely an additive increase in data volume; it represents a qualitative 
leap in data utility, enabling researchers to address questions that are intractable with 
single-modality data. This leads to the development of more robust biomarkers and 
effective interventions.1 

3. Key Public Repositories for Multimodal Physiological Signals 

Several prominent public repositories serve as vital resources for researchers seeking 
multimodal physiological datasets. These platforms play a crucial role in promoting 
data sharing, reusability, and collaborative research in the biomedical domain. 



PhysioNet 
PhysioNet is a highly established and widely recognized repository for physiological and 
clinical data.17 It hosts extensive collections of digital recordings and biomedical signals, 
encompassing cardiopulmonary and neural signals from both healthy individuals and patients 
with various significant public health conditions, including sudden cardiac death, congestive 
heart failure, epilepsy, and sleep apnea.17 The platform employs a tiered access policy—Open 
Access, Restricted Access, and Credentialed Access—to balance the imperative of data 
sharing with necessary privacy and ethical considerations.18 Notably, PhysioNet explicitly 
hosts relevant multimodal datasets, such as the "Multimodal Dataset for Investigating Working 
Memory in Presence of Music," which includes fNIRS, ECG, PPG, and other physiological 
signals.1 It also features specialized datasets like the "Brno University of Technology 
Smartphone PPG Database (BUT PPG)," which focuses on evaluating PPG signal quality.18 
OpenNeuro 
OpenNeuro is a free and open platform specifically designed for the validation and sharing of 
neuroimaging data that adheres to the Brain Imaging Data Structure (BIDS) standard.19 Its 
collection includes a wide array of modalities such as MRI, PET, MEG, EEG, iEEG, and NIRS. As 
per available information, OpenNeuro hosts a substantial number of public EEG datasets (301) 
and NIRS datasets (11), indicating its significant contribution to brain-related signal data.19 
The platform is a designated data archive under the BRAIN Initiative, further solidifying its role 
in neuroscience data sharing.19 Crucially, OpenNeuro hosts specific multimodal datasets 
directly relevant to the user query, including ds003838, which contains EEG, ECG, PPG, and 
pupillometry data 20, and ds004022, featuring EEG and fNIRS.21 
NIH Data Repositories 
The National Institutes of Health (NIH) plays a foundational role in fostering a robust 
biomedical data ecosystem. The NIH differentiates between data repositories and 
knowledgebases, acknowledging their distinct functions and emphasizing the importance of 
sound data management practices for their sustainability and scientific impact.22 While the 
NIH provides a comprehensive list of supported data sharing resources, categorized into 
domain-specific and generalist repositories 17, the provided information does not explicitly 
detail specific multimodal physiological datasets within this broader listing. However, the 
mention of "Pennsieve: Impactful Multimodal Data Sharing for Epilepsy Research" as a funded 
project suggests the NIH's active support for initiatives involving multimodal data, even if the 
precise physiological modalities are not always specified in high-level descriptions.22 
Pennsieve 
Pennsieve is described as a scalable, cloud-based platform dedicated to scientific data 
management, analysis, and publication.24 A core tenet of Pennsieve is its emphasis on 
adherence to FAIR principles (Findable, Accessible, Interoperable, Reusable) for data 
publishing, which is crucial for maximizing data utility and reproducibility.25 The platform 
supports a wide array of scientific file formats and modalities, enabling users to explore public 
datasets.24 Pennsieve also functions as a backend for other public repositories, including the 
NIH SPARC Portal and Epilepsy.Science.26 
The increasing emphasis on "good data management practices" and the alignment 
with "FAIR and TRUST principles" across major funding bodies and platforms like NIH, 



Pennsieve, and OpenNeuro (which is BIDS-compliant) signifies a significant and 
ongoing trend toward standardization and quality assurance in biomedical data 
sharing.19 This concerted effort improves the overall reusability, interpretability, and 
reliability of publicly available datasets. For researchers, datasets adhering to these 
standards are generally more valuable, as they are more likely to have comprehensive 
metadata, clear access protocols, and well-structured data, which directly impacts 
the ease of assessing signal quality and understanding patterns of missing data. This 
also implies a future where data integration across different studies will become 
significantly more streamlined. 

Despite the growth in the number and size of data repositories, a notable challenge 
persists in the efficient discoverability of specific multimodal datasets. Several queries 
for information on how to search for or identify prominent multimodal physiological 
datasets (EEG, fNIRS, ECG, PPG) often yield responses indicating that such granular 
information is unavailable in the high-level descriptions provided by the documents.19 
Even when multimodal data sharing is mentioned, the precise physiological modalities 
included are frequently not detailed in the initial descriptions. This difficulty in 
efficiently querying for datasets that precisely match specific needs, such as a 
particular combination of physiological signals, creates a bottleneck in data reuse. 
Researchers often must manually explore individual dataset descriptions, which is a 
time-consuming and inefficient process. This highlights a critical need for more 
sophisticated, standardized metadata tagging and advanced semantic search 
functionalities within these platforms to fully unlock the potential of multimodal data. 

4. Detailed Analysis of Prominent Multimodal Datasets 

This section provides a detailed examination of key multimodal physiological datasets, 
assessing their modalities, acquisition protocols, signal quality, and data 
completeness. To facilitate comparison, Table 1 offers a concise overview of these 
datasets. 

Table 1: Overview of Key Multimodal Physiological Datasets 

 
Dataset 
Name 

Primary 
Modaliti
es 

Particip
ants 

Key 
Acquisit
ion 
Parame
ters 

Noted 
Signal 
Quality 
Aspects 

Missing 
Data 
Info 

Reposit
ory 

Task/Co
ntext 

Multimo SC, ECG, Small Biopac, fNIRS Small PhysioN Working 



dal 
n-back 
Music 

PPG, 
fNIRS, 
EMG, 
Behavior
al 

sample 
size 1 

2 kHz 
samplin
g rate 
for raw 
data 1 

for 
"high-qu
ality 
data on 
hemody
namic 
variation
s" 1 

sample 
size 
noted 1 

et memory 
(n-back) 
with 
music 1 

OpenNe
uro 
ds0038
38 

EEG, 
ECG, 
PPG, 
Pupillom
etry, 
Behavior
al 

86 
(initial), 
65 
(latest) 
20 

EEG: 
64-ch, 
1000 
Hz; 
ECG/PP
G: aux 
inputs; 
Pupillom
etry: 120 
Hz 32 

Detailed 
acquisiti
on 
protocol
s 
suggest 
quality 
32 

Participa
nt count 
discrepa
ncy 20 

OpenNe
uro 

Digit 
span 
task, 
resting 
state 20 

EEG-fNI
RS WG 
Dataset 
(Sensor
s 2024) 

EEG, 
fNIRS 

26 33 fNIRS: 
72-ch, 
10 Hz; 
EEG: 
30-ch, 
1000 
Hz; 
simultan
eous 
acquisiti
on 33 

Preproc
essing & 
artifact 
filtering 
improve
d 
perform
ance 34 

Balance
d 
classes 
33 

MDPI 
(via 
original 
pub.) 

Mental 
state 
recogniti
on 
(Word 
Generati
on/Basel
ine) 33 

fNIRS 
Resting 
State 
(Synthe
tic HRF) 

fNIRS (+ 
Accel, 
PPG) 

14 per 
subset 16 

5-min/1
0-min 
resting 
state 16 

Provides 
"ground 
truth" 
for 
validatio
n 16 

Not 
specifie
d 

Researc
hGate/O
penNeur
o 

Resting 
state, 
method 
validatio
n 16 

OpenNe
uro 
ds0040
22 

EEG, 
fNIRS 

7 
(orthope
dic 
impairm

EEG: 
18-ch; 
fNIRS: 
raw 21 

Used for 
EEG 
denoisin
g, SNR 
improve

Not 
specifie
d 

OpenNe
uro 

Motor 
imagery 
tasks 21 



ent) 21 ments 
reported 
37 

DREAM
ER 
dataset 

EEG, 
ECG 

Not 
specifie
d 

EEG: 
14-ch, 
128 Hz; 
ECG: 
2-ch, 
256 Hz 
40 

High 
classific
ation 
accurac
y implies 
quality 
40 

Not 
specifie
d 

PMC Emotion 
recogniti
on 40 

CAN-ST
RESS 

Wearabl
e 
Physiolo
gical, 
Self-rep
orted 

82 12 E4 
wristban
d, full 
day 12 

Collecte
d in 
"real-wo
rld 
settings" 
(implies 
noise) 12 

Not 
specifie
d 

arXiv Cannabi
s use, 
stress, 
physiolo
gical 
respons
es 12 

OpenDr
iver 
dataset 

ECG, 
6-axis 
Motion 

81 
vehicles/
drivers 11 

Non-intr
usive 
ECG on 
steering 
wheel 11 

Benchm
arks for 
ECG 
quality 
assessm
ent, 
realistic 
noise 11 

Large 
scale, 
long-ter
m 11 

arXiv Real-wo
rld 
driving 
scenario
s 11 

Dataset 1: PhysioNet's Multimodal n-back Music Dataset 
This dataset is notable for its comprehensive collection of physiological signals, aiming to 
provide a rich understanding of human responses during cognitive tasks. It includes skin 
conductance (SC), electrocardiogram (ECG), skin surface temperature (SKT), respiration 
(RESP), photoplethysmography (PPG), functional near-infrared spectroscopy (fNIRS), 
electromyogram (EMG), de-identified facial expression scores, and behavioral metrics such as 
correct/incorrect responses and reaction time.1 The acquisition protocols involved recording 
raw physiological signals using a Biopac configuration, with a high sampling frequency of 2 
kHz for the raw data.1 Data for each signal type (EDA, ECG, PPG, RESP, EMG) are organized 
into separate CSV folders, and crucial timing triggers for experimental blocks and trials are 
also provided, facilitating precise synchronization and analysis.1 The experimental context 
involves a working memory n-back task performed with background music, allowing for the 
study of cognitive load and its interaction with environmental factors.1 



Regarding signal quality, the dataset's description highlights the utility of fNIRS for 
direct evaluation of brain responses, noting its superior spatial resolution compared to 
EEG for certain applications.1 The portability and ease of use of fNIRS head caps are 
cited as factors contributing to the acquisition of high-quality data on hemodynamic 
variations.1 The multimodal nature of the dataset is emphasized as a means to capture 
complementary aspects of neural activity and physiological changes, thereby offering 
a more comprehensive picture of brain responses.1 While the dataset is rich in 
modalities, a stated limitation is its "small sample size" 1, which can affect the 
generalizability of findings. The provided information does not detail specific 
quantitative signal quality metrics (e.g., Signal-to-Noise Ratio, SNR) or explicit 
strategies for handling missing data within modalities. 

Dataset 2: OpenNeuro's ds003838 (EEG, ECG, PPG, Pupillometry) 
This dataset offers a robust collection for studying cognitive load and working memory. It 
comprises raw 64-channel EEG, cardiovascular data (ECG and PPG), pupillometry, and 
behavioral data (correctness of recall, reaction time).20 Initially collected from 86 human 
participants, the dataset's latest version includes data from 65 participants.20 Data 
acquisition took place during a 4-minute eyes-closed resting state and a classic working 
memory task, specifically a digit span task with serial recall.20 The EEG data were acquired 
using a 64-channel ActiCHamp system (Brain Products, Germany) with active electrodes, 
positioned according to the extended 10–20 system. The online reference was at FCz, and the 
ground electrode at Fpz, with impedance maintained below 25 kOm. The sampling rate for 
EEG was 1000 Hz, with no online digital filters applied.32 ECG and PPG signals were acquired 
using the same amplifier from auxiliary inputs, with specific electrode placements for ECG and 
PPG from the left index finger.32 Pupillometry was recorded with a Pupil Labs wearable 
eye-tracker at a 120 Hz sampling rate, with one-point calibration preceding each recording.32 
The data is stored in BIDS format, with EEG and ECG in EEGLAB (.set) format and pupillometry 
in.tsv format.32 
While explicit quantitative signal quality metrics for all modalities are not provided in 
the snippets for this specific dataset, the detailed acquisition parameters, such as 
maintaining low impedance for EEG electrodes, indicate a commitment to high-quality 
data collection.32 The dataset's utility as a resource for the BrainBeats toolbox, which 
emphasizes signal visualization at various processing steps, further suggests a focus 
on signal integrity.9 The reduction in participant count from 86 to 65 between initial 
publication and later versions could suggest data exclusion due to quality issues or 
re-curation, though the specific reasons are not detailed in the provided 
information.20 No explicit mention of missing data points or trials within the provided 
snippets for ds003838 is present, but the broader literature acknowledges the 
"missing modality problem" in multimodal learning.14 

Dataset 3: EEG-fNIRS WG Dataset (Sensors 2024) 



This dataset is an open-access resource featuring simultaneous recordings of EEG and fNIRS 
signals.33 It is specifically designed for mental state recognition tasks, including Word 
Generation (WG) and Baseline (BL) trials.33 The dataset includes data from 26 healthy 
subjects, with each participant completing 60 trials across three sessions.33 The fNIRS data 
were captured using 72 channels at a sampling rate of 10 Hz, while the EEG data were 
recorded from 30 channels at a higher sampling rate of 1000 Hz.33 A key aspect of its 
acquisition protocol is that both fNIRS optodes and EEG electrodes were mounted on the 
same cap, ensuring precise spatial alignment and facilitating simultaneous data acquisition.33 
Regarding signal quality, a related publication indicates that "fNIRS signal 
preprocessing and artifact noise filtering" were implemented, which significantly 
improved performance.34 This suggests that the raw data likely contained artifacts 
requiring careful handling. Review papers on EEG-fNIRS systems also note that these 
techniques can be "de-artifacted," implying inherent noise characteristics that 
demand attention.4 The dataset has been utilized to demonstrate that multimodal 
fusion can enhance classification accuracy and versatility compared to 
single-modality approaches.3 The experimental design is balanced between the two 
task classes (WG and BL trials).33 No explicit details on missing data points or trials 
within this specific dataset are provided in the snippets; the emphasis is on the 
successful simultaneous acquisition and the benefits derived from fusing the 
modalities. 

Other Relevant Multimodal Datasets 
Beyond these detailed examples, several other datasets contribute significantly to the 
multimodal physiological data landscape: 
● Open Access Multimodal fNIRS Resting State Dataset With and Without 

Synthetic Hemodynamic Responses 16: This dataset is primarily fNIRS, but 
includes additional physiological signals like accelerometer or PPG.16 A crucial 
feature for signal quality assessment is its provision of "realistic fNIRS ground 
truth data by modeling a hemodynamic response function (HRF) on top of real 
resting state data".16 This allows for objective validation of noise removal and 
signal processing methods. It includes 5-minute and 10-minute resting state data 
from 14 participants each.16 The explicit inclusion of "ground truth" or "reference" 
signals in this and other datasets (e.g., the PhysioNet EEG/fNIRS motion artifact 
dataset utilizing "reference ground truth" signals from an unimpacted channel 47) 
highlights a critical methodological development in signal quality assessment. 
This growing recognition of the need for a known clean signal to compare against 
allows for objective evaluation and benchmarking of noise reduction techniques 
and overall signal fidelity. Without such a comparison, assessing the true quality 
of a noisy physiological signal or the effectiveness of a denoising algorithm 
remains subjective and challenging. Therefore, datasets that explicitly include or 



simulate "ground truth" are particularly valuable for method development, 
validation, and establishing reliable performance metrics. This indicates a shift 
towards more rigorous and quantifiable approaches to signal processing. 

● Multimodal EEG and fNIRS Biosignal Acquisition during Motor Imagery 
Tasks in Patients with Orthopedic Impairment (OpenNeuro ds004022) 4: This 
dataset contains raw 18-channel EEG and fNIRS signals from 7 participants with 
orthopedic impairment during motor imagery tasks.21 It is specifically referenced 
in studies on EEG denoising using adversarial learning (GANs), with reported SNR 
improvements (up to 14.47 dB).37 This suggests that the dataset likely contains 
significant noise or artifacts, making it a valuable resource for testing and 
developing robust denoising algorithms. 

● DREAMER dataset 40: This is a multimodal physiological signal dataset designed 
for emotion recognition research, incorporating EEG (14 electrodes, 128 Hz 
sampling rate) and ECG (2-channel, 256 Hz sampling rate) data.40 Its use in 
validating deep learning models, which achieved high classification accuracy 
(e.g., 95.95% for the 'value' dimension), implies sufficient signal quality for robust 
feature extraction.40 

● CAN-STRESS 12: This dataset comprises multimodal physiological data collected 
via E4 wearable wristbands, combined with self-reported questionnaires, from 82 
participants over a full day of daily activities.12 Its collection in "real-world 
settings" inherently implies higher noise levels, yet it is described as a large 
resource suitable for developing advanced signal processing algorithms.12 

● OpenDriver dataset 11: This large-scale dataset includes six-axis motion data 
and ECG signals collected using non-intrusive methods (ECG sensors on the 
steering wheel cover) in real-world driving scenarios.11 It addresses limitations of 
existing datasets, such as poor signal quality and intrusive measurement 
methods, and provides benchmarks for ECG signal quality assessment, including 
a noisy augmentation strategy for realistic noise simulation.11 This dataset is also 
notable for its extensive sample size and long-term data collection from 81 
vehicles and 81 drivers, addressing limitations of small sample sizes and short 
data collection periods that can hinder generalizability due to inter-individual 
variability in physiological signals.11 

The consistent identification of motion artifacts as a significant challenge across all 
physiological modalities, particularly when data is collected in less controlled 
environments or with wearable devices, highlights a pervasive factor affecting signal 
quality. PPG is notably susceptible to movement and environmental factors 7, fNIRS 
signals can be obscured by motion and breathing 16, and even EEG is prone to muscle 
activity and motion artifacts.2 This challenge is amplified by the growing desire for 



more ecologically valid data, which inherently introduces more movement and 
environmental interference. Thus, the need for robust artifact identification and 
correction is a primary hurdle for data utility.2 Datasets that explicitly include or 
simulate motion artifacts, or provide "ground truth" for artifact removal, are 
particularly valuable for developing robust and generalizable preprocessing 
techniques that can make real-world data usable. 

A notable trade-off exists between the richness and depth of multimodal data (i.e., 
collecting many different signals) and the scale or completeness of the datasets 
(number of participants, duration of recording, absence of missing data). Collecting 
comprehensive multimodal data is often resource-intensive, which contributes to 
smaller sample sizes or shorter recording durations.1 This, in turn, creates challenges 
for the generalizability and robustness of models trained on such data, as 
physiological signals exhibit significant inter-individual variability.11 The "missing 
modality problem" is a recognized challenge in multimodal learning, occurring due to 
factors such as sensor limitations, cost constraints, privacy concerns, or data loss 
during collection or transmission.14 This problem necessitates the development of 
specific computational approaches that can inherently handle incomplete data, rather 
than simply discarding incomplete samples. This implies that researchers must either 
seek larger, more diverse, and complete datasets (which are rare) or focus on 
developing advanced methods to handle the inherent incompleteness that often 
characterizes real-world multimodal data. 

5. Comparative Observations: Signal Quality and Data Completeness Across 
Modalities and Datasets 

The review of publicly available multimodal physiological datasets reveals several 
overarching observations regarding signal quality and data completeness. These 
observations highlight both inherent challenges and strategic approaches within the 
field. 

Inherent Challenges of Multimodal Physiological Signal Acquisition 
A primary challenge across all modalities (EEG, ECG, PPG, fNIRS) is the pervasive presence of 
motion artifacts. PPG, for instance, is highly susceptible to corruption by movements and 
environmental factors.7 Similarly, fNIRS signals can be masked by physiological noise such as 
motion and breathing 16, and EEG, despite its high temporal resolution, is vulnerable to 
muscle activity and general motion artifacts.2 This problem is particularly pronounced when 
data is collected in less controlled, real-world environments or using wearable devices.10 
Beyond motion, other physiological processes introduce confounding noise. For 
fNIRS, superficial (scalp) blood flow and low-frequency oscillations, like Mayer waves, 
are significant confounds.16 ECG and PPG signals can also be affected by ambient 



light interference and pressure variations.8 These intrinsic noise sources necessitate 
meticulous preprocessing. 

A consistent theme in multimodal brain imaging is the complementary nature of EEG 
and fNIRS. EEG offers superior temporal resolution, capturing millisecond-level 
changes in electrical brain activity, but its spatial resolution is limited, making precise 
localization of brain regions challenging. Conversely, fNIRS provides better spatial 
localization of hemodynamic changes but exhibits a slower temporal response, with a 
typical 1-2 second delay and a peak response 4-6 seconds after a stimulus.2 This 
inherent trade-off is the primary driver for their combined use, as their strengths 
compensate for each other's weaknesses. 

For cardiovascular monitoring, a trade-off exists between practicality and accuracy, 
particularly when comparing ECG and PPG. ECG remains the clinical gold standard for 
measuring cardiac electrical activity, offering high accuracy. However, its requirement 
for subjects to remain stationary makes it impractical for continuous, daily monitoring. 
PPG, being non-invasive and easily integrated into wearables, offers the advantage of 
continuous monitoring but is more prone to noise, complicating the accurate 
inference of ECG-like waveforms.7 

Approaches to Signal Quality Enhancement and Artifact Removal 
To address these challenges, various strategies are employed to enhance signal quality and 
remove artifacts. Standard preprocessing pipelines typically involve steps such as removing 
power line noise (e.g., using a 50 Hz notch filter) and correcting for baseline drift, which is 
crucial for ensuring local stationarity of the mean value in physiological responses.5 
Multimodal fusion itself can contribute to denoising and artifact correction. For 
example, simultaneous fNIRS recording can assist in identifying and correcting 
artifacts in EEG data.2 The combination of EEG and fNIRS signals has the potential to 
significantly compensate for each other's limitations, thereby improving the overall 
signal-to-noise ratio.15 

Advanced denoising techniques are also a significant area of research. Machine 
learning methods, such as adversarial learning (GANs), are being explored for EEG 
denoising, with studies demonstrating that models like WGAN-GP can substantially 
improve EEG signal fidelity and achieve higher SNRs.37 

The presence of "ground truth" or "reference" signals within datasets is increasingly 
recognized as critical for objectively evaluating the effectiveness of denoising and 
preprocessing techniques. Datasets that provide such references, like the "Open 
Access Multimodal fNIRS Resting State Dataset" with its synthetic HRF ground truth or 
the PhysioNet EEG/fNIRS motion artifact dataset with its "reference ground truth" 



channel, are invaluable for validating new algorithms and establishing reliable 
performance metrics.16 

Strategies for Managing Missing Data in Multimodal Contexts 
Data completeness is another significant aspect. The "missing modality problem" is a 
recognized and substantial challenge in multimodal learning. Data modalities can be absent 
due to various factors, including sensor limitations, cost constraints, privacy concerns, or 
simple data loss during collection or transmission.14 This highlights that the presence of 
missing data in multimodal physiological datasets is not just a minor inconvenience but a 
fundamental characteristic inherent to their real-world acquisition. This necessitates a 
paradigm shift in how researchers approach data analysis: instead of solely focusing on data 
cleaning to achieve complete datasets (which may not be feasible or desirable), there is a 
critical need for computational approaches that can inherently and robustly handle 
incomplete data. This implies that future research and dataset design should explicitly 
account for the "missing modality problem," making datasets with realistic patterns of missing 
data particularly valuable for developing and testing these robust, real-world-ready models. 
The field is actively developing specific computational approaches, known as 
Multimodal Learning with Missing Modality (MLMM) techniques, to ensure model 
robustness even when some modalities are unavailable during training or testing.14 
While simply removing missing-modality samples is a common preprocessing strategy, 
it can lead to significant data loss and reduced generalizability.14 

Furthermore, the impact of sample size and recording duration on generalizability is a 
crucial consideration. Many existing physiological datasets suffer from "small sample 
sizes" and "short data collection periods".11 This limitation is critical because 
inter-individual variability in physiological signals can significantly impact the 
generalizability and robustness of algorithms trained on such limited data.11 

Benchmarking Frameworks and Their Role in Dataset Evaluation 
Benchmarking frameworks play a crucial role in standardizing evaluation and driving 
improvements in data quality. The BenchNIRS framework, for example, is an open-source tool 
specifically for fNIRS data that aims to establish best practices for machine learning 
methodology. It utilizes five open-access datasets and robust techniques like nested 
cross-validation to optimize and evaluate models without bias, providing standardized metrics 
for comparison.6 
Another significant initiative is CLIMB (Clinical Large-scale Integrative Multimodal 
Benchmark), which unifies diverse clinical data, including EEG and ECG, from multiple 
medical institutions. A key feature of CLIMB is its novel data collection and 
preprocessing pipeline that standardizes data formats while importantly preserving 
the natural patterns of missing data.50 This framework emphasizes multitask 
pretraining to improve performance across various clinical tasks, even on 



understudied modalities.50 The existence and design of such frameworks are not 
merely passive evaluation tools; they act as catalysts for improving the quality and 
utility of biomedical datasets. By providing standardized, objective means of 
evaluation, they encourage researchers to focus their efforts on addressing known 
data limitations (such as noise and missingness) in a quantifiable and comparable 
manner. This, in turn, drives the development of more robust signal processing 
techniques, more effective artifact removal algorithms, and ultimately, the creation of 
higher-quality, more reliable datasets. This implies that datasets included in or 
validated by such benchmarks are likely to be of higher intrinsic value for the research 
community, as their quality has been rigorously assessed against established 
standards. 

A fundamental tension exists between the desire for high data quality and the pursuit 
of real-world applicability. The increasing drive to collect data in "real-world settings" 
11 and with "wearable devices" 7 is a clear trend aimed at developing practical 
applications. However, these environments are inherently less controlled than 
laboratories, and signals collected in such contexts are explicitly noted to be "easily 
corrupted by movements" 7 or to suffer from "poor signal quality".11 Reviews on 
EEG-based multimodal Human-Computer Interfaces also highlight "difficulties in 
signal synchronization" and "limited data availability" as challenges for real-time 
online systems.3 This inherent lack of control in real-world environments directly 
contributes to a degradation in raw signal quality. Therefore, for multimodal 
physiological data to be truly useful in real-world applications, there is an urgent and 
continuous need for sophisticated, robust preprocessing and denoising techniques 
that can effectively handle this increased noise without sacrificing valuable 
physiological information. This suggests a continuous feedback loop where real-world 
data informs the development of advanced processing methods, and improved 
methods, in turn, enable more reliable and widespread real-world data collection. 

6. Recommendations for Researchers Utilizing Multimodal Physiological Datasets 

Based on the comprehensive review of publicly available multimodal physiological 
datasets, the following recommendations are provided for researchers seeking to 
leverage these valuable resources: 

● Prioritize Established Repositories and Standards: Researchers should 
actively seek datasets from well-regarded repositories such as PhysioNet and 
OpenNeuro, which are known for their curated, high-quality data collections.17 
Furthermore, favoring datasets that adhere to established data sharing principles 
like FAIR (Findable, Accessible, Interoperable, Reusable) and TRUST 
(Transparency, Responsibility, User focus, Sustainability, Technology), as well as 



specific data structures like BIDS (Brain Imaging Data Structure), is crucial. These 
standards are instrumental in promoting data quality, enhancing reusability, and 
ensuring comprehensive metadata, which are all vital for robust research.19 

● Thoroughly Scrutinize Acquisition Protocols and Metadata: A critical step 
before utilizing any dataset is to meticulously review its acquisition parameters. 
This includes understanding the sampling rates (e.g., 2 kHz for Biopac data, 1000 
Hz for EEG), channel configurations, and the types of sensors used.1 Such 
detailed information is fundamental for comprehending the raw signal 
characteristics and for applying appropriate preprocessing steps. Equally 
important is assessing the completeness and quality of associated contextual 
metadata, which encompasses task descriptions, participant demographics, and 
any recorded behavioral data. Rich and well-structured contextual information 
significantly enhances the utility and interpretability of physiological signals, 
allowing for deeper analysis and more meaningful conclusions.1 The utility and 
scientific value of raw physiological signals are profoundly enhanced by the 
presence of rich, contextual metadata. This metadata, including behavioral 
responses, task conditions, environmental factors, and self-reports, provides the 
necessary framework to interpret the physiological changes. This leads to a more 
complete understanding of the underlying biological and cognitive processes, 
enabling more nuanced interpretations, robust model development, and the 
ability to test complex hypotheses. Therefore, researchers should prioritize 
datasets that offer comprehensive and well-structured metadata, as this directly 
impacts the depth of analysis and the ability to draw meaningful, generalizable 
conclusions, moving beyond mere signal processing to true biomedical insight. 

● Seek Datasets with "Ground Truth" or Reference Signals: For research 
specifically focused on signal processing, artifact removal, or denoising, 
prioritizing datasets that provide "ground truth" or "reference" signals is highly 
recommended. The availability of a known clean signal allows for objective 
evaluation and rigorous benchmarking of new algorithms, which is essential for 
advancing signal processing methodologies.16 

● Be Prepared for Artifact Management: Researchers must acknowledge that 
motion artifacts and other physiological confounds are inherent challenges in 
physiological data, particularly in real-world or wearable data collection 
scenarios. Consequently, it is imperative to be prepared to implement robust 
artifact identification and removal techniques.2 Datasets that explicitly address or 
demonstrate preprocessing steps for artifact reduction can also provide valuable 
guidance. 

● Account for Data Completeness and Generalizability: Awareness of dataset 
sample sizes and recording durations is crucial, as these factors directly influence 



the generalizability of research findings due to significant inter-individual 
variability in physiological signals.1 For datasets that inherently contain missing 
modalities, it is advisable to explore or develop Multimodal Learning with Missing 
Modality (MLMM) techniques. This approach, rather than simply discarding 
incomplete data, maximizes data utility and enhances model robustness in 
real-world applications.14 

● Leverage Benchmarking Studies: Consulting established benchmarking 
frameworks, such as BenchNIRS and CLIMB, and relevant studies that evaluate 
models on diverse datasets can provide invaluable insights. These resources offer 
a standardized perspective on dataset quality and the performance of various 
analytical approaches, guiding researchers toward effective methodologies and 
reliable data sources.6 

7. Conclusion and Future Directions 

This report has provided a critical review of publicly available multimodal biomedical 
datasets, focusing on EEG, ECG, PPG, and fNIRS, with an assessment of their signal 
quality and data completeness. Key repositories like PhysioNet and OpenNeuro, 
alongside initiatives from NIH and platforms such as Pennsieve, were identified as 
crucial resources. 

The analysis of specific datasets underscored the intrinsic challenges in multimodal 
physiological data acquisition, predominantly characterized by pervasive motion 
artifacts and physiological confounds. The complementary strengths of 
modalities—EEG providing high temporal resolution and fNIRS offering better spatial 
resolution—drive their combined use, while the practicality of PPG for continuous 
monitoring often comes with increased susceptibility to noise. The critical need for 
"ground truth" data to objectively evaluate signal quality and denoising techniques 
was also highlighted. Furthermore, the "missing modality problem" and the limitations 
imposed by small sample sizes in many datasets present significant hurdles to data 
completeness and generalizability. 

Despite these challenges, the field is actively progressing. Benchmarking frameworks 
like BenchNIRS and CLIMB are emerging to standardize evaluation and drive 
continuous improvements in data quality and processing methodologies. The 
increasing focus on collecting data in real-world settings, while introducing more 
noise, simultaneously propels the development of more robust analytical tools 
capable of handling such complexities. 

The accelerating trend in biomedical research towards increasing the ecological 
validity of data collection, by moving from highly controlled laboratory settings to 



"real-world driving scenarios" or "naturalistic conditions," is a positive development 
for translational research.4 However, this shift inherently leads to an increase in data 
complexity, noise, and potential for missingness, as real-world environments are far 
less controlled than laboratory settings. Therefore, a critical future direction is to 
balance the scientific rigor achievable in controlled experiments with the practical 
utility of real-world data. This necessitates a continuous feedback loop where 
challenges encountered in real-world data inform the development of more robust 
computational methods, and these improved methods, in turn, enable more reliable 
and widespread real-world data collection and analysis. This suggests that the future 
of multimodal physiological data research lies in embracing, rather than avoiding, the 
complexities of naturalistic environments. 

Future Directions: 

● Larger, More Diverse, and Longitudinal Datasets: There is a pressing need for 
the collection and public release of larger, more diverse, and longitudinally 
acquired multimodal datasets, particularly those captured in naturalistic, 
real-world settings. This will be instrumental in addressing issues of 
generalizability and inter-individual variability, which are significant limitations in 
many current datasets. 

● Advanced AI/ML for Imperfect Data: Continued research and development of 
sophisticated artificial intelligence and machine learning techniques are 
paramount. These techniques must be specifically designed to robustly handle 
noisy, artifact-ridden, and inherently incomplete multimodal data, including 
advanced Multimodal Learning with Missing Modality (MLMM) techniques and 
more effective denoising algorithms. 

● Enhanced Data Interoperability and Standardization: Further adoption and 
rigorous enforcement of standardized data formats (e.g., BIDS) and data sharing 
principles (FAIR, TRUST) will be crucial. This will facilitate seamless data reuse, 
enable more effective integration across disparate studies, and promote more 
efficient collaborative research efforts. 

● Integration of Broader Physiological and Contextual Signals: Future datasets 
should aim to integrate an even wider array of physiological signals, 
environmental factors, and rich behavioral or self-reported data. This 
comprehensive approach will provide a truly holistic and ecologically valid 
understanding of human states and conditions, moving beyond isolated 
physiological measurements to a more integrated view of human health and 
behavior. 
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